If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-35x-72=0
a = 6; b = -35; c = -72;
Δ = b2-4ac
Δ = -352-4·6·(-72)
Δ = 2953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{2953}}{2*6}=\frac{35-\sqrt{2953}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{2953}}{2*6}=\frac{35+\sqrt{2953}}{12} $
| 160=16j | | 75=5k+3(-6k-1 | | 3/8(n+10)=6. | | (n+10)=6. | | -10+4x=9x | | U=20u | | (2x+13)+(3x+1)=180 | | p+80=139 | | 3/4n-5=-5+n | | (2x-4)=6(x-12 | | 2(2z-58)=2z-69+z | | 2x-28=-5x | | 46+5x=8x-8 | | (x/5)x3=30 | | 4z+82=122 | | 5f–12=18 | | (2/3)x-(1/6)=(x/9) | | 3p+4=8p-86 | | 2(z)=-z+72+z+14 | | 2.6a-5.8-3a=-7.44 | | 3z-94=z-18 | | 6+3x+6x=33 | | 114=3s-18 | | 2v-4-10=-2-1+4v | | u+24=3u-80 | | b=2(17+25) | | t-(15)=21 | | y=23+0.05y | | b=1/2(17+25) | | 6.576=a/3.4+5.9 | | 7-(2x-4)-5(x+2)=3-2(3x+1) | | 77=-3x-3x+12 |